微流控技术在纳米药物载体制备中的应用

孙漩嵘, 徐卓敏, 蔡悦

中国药学杂志 ›› 2020, Vol. 55 ›› Issue (8) : 573-579.

PDF(4616 KB)
PDF(4616 KB)
中国药学杂志 ›› 2020, Vol. 55 ›› Issue (8) : 573-579. DOI: 10.11669/cpj.2020.08.001
综述

微流控技术在纳米药物载体制备中的应用

  • 孙漩嵘, 徐卓敏, 蔡悦
作者信息 +

Application of Microfluidic Technology for Preparation of Nanoparticle Drug Carriers

  • SUN Xuan-rong, XU Zhuo-min, CAI Yue
Author information +
文章历史 +

摘要

微流控技术是一种在微纳米尺度空间中对流体进行精确控制和操纵的科学技术,具有将生物、化学等实验室的基本功能包括样品制备、反应、分离和检测等微缩到一个几平方厘米芯片上的能力,目前也成为纳米医药领域的研究热点之一。与传统制备纳米材料的方法相比较,微流控技术在纳米药物载体开发中具有许多优势,如能够精确控制结构、批次间重复性高、快速有效等。笔者将简要介绍微流控技术及其在聚合物纳米粒、脂质纳米粒和杂化纳米粒等纳米药物载体制备中的应用,同时也为今后研究者如何选择准确合理的微流控技术制备纳米药物载体提供思路与参考,并对其未来的发展和挑战进行展望。

Abstract

Microfluidic technology is a scientific technology that precisely controls and manipulates fluids in micro-nano-scale space, and has become one of the research hotspots in the field of nanomedicine. It has the ability to scale the basic functions of biological and chemical laboratories, including sample preparation, reaction, separation and detection, to a few square centimeters of chip. Compared with traditional approaches, microfluidic technology is equipped with many advantages in the development of nanomedicine carriers, such as controlling quality precisely, high reproducibility, fast and effective. Herein, this paper provides the brief introduction about the microfluidic technology and its application in the preparation of nanoparticulate drug carriers, which including polymer nanoparticles, lipid nanoparticles and hybrid nanoparticles. This review will provide ideas and references in utilization of microfluidic technology accurately and reasonably and also bring some prospects for its future development and challenges.

关键词

微流控技术 / 纳米颗粒 / 药物载体 / 制备 / 精确控制

Key words

microfluidic technology / nanoparticle / drug carrier / preparation / precise control

引用本文

导出引用
孙漩嵘, 徐卓敏, 蔡悦. 微流控技术在纳米药物载体制备中的应用[J]. 中国药学杂志, 2020, 55(8): 573-579 https://doi.org/10.11669/cpj.2020.08.001
SUN Xuan-rong, XU Zhuo-min, CAI Yue. Application of Microfluidic Technology for Preparation of Nanoparticle Drug Carriers[J]. Chinese Pharmaceutical Journal, 2020, 55(8): 573-579 https://doi.org/10.11669/cpj.2020.08.001
中图分类号: R944   

参考文献

[1] LANGER R. Drug delivery and targeting[J]. Nature, 1998, 392(6679):5-10.
[2] RAEMDONCK K, BRAECKMANS K, DEMEESTER J, et al. Merging the best of both worlds:hybrid lipid-enveloped matrix nanocomposites in drug delivery[J]. Chem Soc Rev, 2014, 43(1):444-472.
[3] HUBBELL J A, CHILKOTI A. Nanomaterials for drug delivery[J]. Science, 2012, 337(6092):303-305.
[4] MURA S, NICOLAS J, COUVREUR P. Stimuli-responsive nanocarriers for drug delivery[J]. Nat Mater, 2013, 12(11):991-1003.
[5] CHEN C, WANG J, ZHAO E, et al. Self-assembly cationic nanoparticles based on cholesterol-grafted bioreducible poly(amidoamine) for siRNA delivery[J]. Biomaterials, 2013, 34(21):5303-5316.
[6] LEPELTIER E, BOURGAUX C, COUVREUR P. Nanoprecipitation and the "Ouzo effect": application to drug delivery devices[J]. Adv Drug Deliv Rev, 2014, 71:86-97.
[7] ZHANG Y, CHAN H F, LEONG K W. Advanced materials and processing for drug delivery: the past and the future[J]. Adv Drug Deliv Rev, 2013, 65(1):104-120.
[8] DESAI N. Challenges in development of nanoparticle-based therapeutics[J]. AAPS J, 2012, 14(2):282-295.
[9] GAUMET M, VARGAS A, GURNY R, et al. Nanoparticles for drug delivery:the need for precision in reporting particle size parameters[J]. Eur J Pharm Biopharm, 2008, 69(1):1-9.
[10] MENGYUAN G, FENGHUA L, YU B. Application of microfluidic technology in synthesisof nanoparticles[J]. Chin J Appl Chem(应用化学), 2016(33):1115-1125.
[11] WHITESIDES G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101):368-373.
[12] MANZ A, HARRISON D J, VERPOORTE E, et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems-capillary electrophoresis on a chip[J]. J Chromatogr, 1992, 593(1-2):253-258.
[13] MANZ A, HARRISON D J, VERPOORTE E, et al. Minialurization of chemical analysis system-a look into next century's technology or just a fashionable craze[J]. Chimia, 1991, 45(4):103-105.
[14] MANZ A, GRABER N, WIDMER H M. Miniaturized total chemical-analysis systems-a novel concept for chemical sensing[J]. Sensor Actuat B-Chem, 1990, 1(1-6):244-248.
[15] DITTRICH P S, MANZ A. Lab-on-a-chip: microfluidics in drug discovery[J]. Nat Rev Drug Discov, 2006, 5(3):210-218.
[16] DEMELLO A J. Control and detection of chemical reactions in microfluidic systems[J]. Nature, 2006, 442(7101):394-402.
[17] SACKMANN E K, FULTON A L, BEEBE D J. The present and future role of microfluidics in biomedical research[J]. Nature, 2014, 507(7491):181-189.
[18] AHN J, KO J, LEE S, et al. Microfluidics in nanoparticle drug delivery; from synthesis to pre-clinical screening[J]. Adv Drug Deliv Rev, 2018, 128:29-53.
[19] LU M, YANG S, HO Y, et al. Shape-controlled synthesis of hybrid nanomaterials via three-dimensional hydrodynamic focusing[J]. Acs Nano, 2014, 8(10):10026-10034.
[20] SQUIRES T M, QUAKE S R. Microfluidics: fluid physics at the nanoliter scale[J]. Rev Mod Phys, 2005, 77(3):977-1026.
[21] NOVOTNY J, FORET F. Fluid manipulation on the micro-scale: basics of fluid behavior in microfluidics[J]. J Sep Sci, 2017, 40(1):383-394.
[22] TSUI J H, LEE W, PUN S H, et al. Microfluidics-assisted in vitro drug screening and carrier production[J]. Adv Drug Deliv Rev, 2013, 65(11-12):1575-1588.
[23] DEMELLO J, DEMELLO A. Microscale reactors: nanoscale products[J]. Lab Chip, 2004, 4(2):11-15.
[24] KIM Y, CHUNG B L, MA M, et al. Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices[J]. Nano Lett, 2012, 12(7):3587-3591.
[25] MAEKI M, SAITO T, SATO Y, et al. A strategy for synthesis of lipid nanoparticles using microfluidic devices with a mixer structure[J]. Rsc Adv, 2015, 5(57):46181-46185.
[26] LIU Z, YANG Y, DU Y, et al. Advances in droplet-based microfluidic technology and its applications[J]. Chin J Anal Chem, 2017, 45(2):282-295.
[27] REZVANTALAB S, MORAVEJI M K. Microfluidic assisted synthesis of PLGA drug delivery systems[J]. Rsc Adv, 2019, 9(4):2055-2072.
[28] KARNIK R, GU F, BASTO P, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles[J]. Nano Lett, 2008, 8(9):2906-2912.
[29] CHIESA E, DORATI R, MODENA T, et al. Multivariate analysis for the optimization of microfluidics-assisted nanoprecipitation method intended for the loading of small hydrophilic drugs into PLGA nanoparticles[J]. Int J Pharm, 2018, 536(1):165-177.
[30] MORIKAWA Y, TAGAMI T, HOSHIKAWA A, et al. The use of an efficient microfluidic mixing system for generating stabilized polymeric nanoparticles for controlled drug release[J]. Biol Pharm Bull, 2018, 41(6):899-907.
[31] ABSTIENS K, GOEPFERICH A M. Microfluidic manufacturing improves polydispersity of multicomponent polymeric nanoparticles[J]. J Drug Deliv Sci Tec, 2019, 49:433-439.
[32] YU M, XU L, TIAN F, et al. Rapid transport of deformation-tuned nanoparticles across biological hydrogels and cellular barriers[J]. Nat Commun, 2018, 9(1):1-11.
[33] AHMAD Z, SHAH A, SIDDIQ M, et al. Polymeric micelles as drug delivery vehicles[J]. Rsc Adv, 2014, 4(33):17028-17038.
[34] TAN Z, LAN W, LIU Q, et al. Kinetically controlled self-assembly of block copolymers into segmented wormlike micelles in microfluidic chips[J]. Langmuir, 2019, 35(1):141-149.
[35] BAINS A, CAO Y, KLY S, et al. Controlling structure and function of polymeric drug delivery nanoparticles using microfluidics[J]. Mol Pharm, 2017, 14(8):2595-2606.
[36] WANG C, SINTON D, MOFFITT M G. Flow-directed block copolymer micelle morphologies via microfluidic self-assembly[J]. J Am Chem Soc, 2011, 133(46):18853-18864.
[37] XU Z, LU C, RIORDON J, et al. Microfluidic manufacturing of polymeric nanoparticles: comparing flow control of multiscale structure in Single-Phase staggered herringbone and Two-Phase reactors[J]. Langmuir, 2016, 32(48):12781-12789.
[38] CAO Y, SILVERMAN L, LU C, et al. Microfluidic manufacturing of SN-38 Loaded polymer nanoparticles with shear processing control of drug delivery properties[J]. Mol Pharm, 2019, 16(1):96-107.
[39] CHEN R, WULFF J E, MOFFITT M G. Microfluidic processing approach to controlling drug delivery properties of Curcumin-Loaded block copolymer nanoparticles[J]. Mol Pharm, 2018, 15(10):4517-4528.
[40] KANASTY R, DORKIN J R, VEGAS A, et al. Delivery materials for siRNA therapeutics[J]. Nat Mater, 2013, 12(11):967-977.
[41] LIU C, FENG Q, SUN J. Lipid nanovesicles by microfluidics: manipulation, synthesis, and drug delivery[J]. Adv Mater, 2018,31(45):1-8.
[42] DE JESUS VALLE M J, SANCHEZ NAVARRO A. Liposomes prepared in absence of organic solvents:sonication versus lipid film hydration method[J]. Curr Pharm Anal, 2015, 11(2):86-91.
[43] CHARCOSSET C, JUBAN A, VALOUR J, et al. Preparation of liposomes at large scale using the ethanol injection method: effect of scale-up and injection devices[J]. Chem Eng Res Des, 2015, 94:508-515.
[44] JAHN A, VREELAND W N, GAITAN M, et al. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing[J]. J Am Chem Soc, 2004, 126(9):2674-2675.
[45] LI X J, VALADEZ A V, ZUO P, et al. Microfluidic 3D cell culture: potential application for tissue-based bioassays[J]. Bioanalysis, 2012, 4(12):1509-1525.
[46] BALBINO T A, AOKI N T, GASPERINI A A M, et al. Continuous flow production of cationic liposomes at high lipid concentration in microfluidic devices for gene delivery applications[J]. Chem Eng J, 2013, 226:423-433.
[47] VALENCIA P M, PRIDGEN E M, RHEE M, et al. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy[J]. Acs Nano, 2013, 7(12):10671-10680.
[48] LI Y, LEE R J, HUANG X, et al. Single-step microfluidic synthesis of transferrin-conjugated lipid nanoparticles for siRNA delivery[J]. Nanomed-Nanotechnol, 2017, 13(2):371-381.
[49] FORBES N, HUSSAIN M T, BRIUGLIA M L, et al. Rapid and scale-independent microfluidic manufacture of liposomes entrapping protein incorporating in-line purification and at-line size monitoring[J]. Int J Pharm, 2019, 556:68-81.
[50] WANG F, LI C, CHENG J, et al. Recent advances on inorganic nanoparticle-based cancer therapeutic agents[J]. Int J Environ Res Public Health, 2016, 13(12):1182.
[51] ABOU-HASSAN A, SANDRE O, CABUIL V. Microfluidics in inorganic chemistry[J]. Angew Chem Inter Ed, 2010, 49(36):6268-6286.
[52] FENG Q, SUN J, JIANG X. Microfluidics-mediated assembly of functional nanoparticles for cancer-related pharmaceutical applications[J]. Nanoscale, 2016, 8(25):12430-12443.
[53] HE P, GREENWAY G, HASWELL S J. Microfluidic synthesis of silica nanoparticles using polyethylenimine polymers[J]. Chem Eng J, 2011, 167(2-3):694-699.
[54] EDEL J B, FORTT R, DEMELLO J C, et al. Microfluidic routes to the controlled production of nanoparticles[J]. Chem Commun, 2002,(10):1136-1137.
[55] STOLZENBURG P, LORENZ T, DIETZEL A, et al. Microfluidic synthesis of metal oxide nanoparticles via the nonaqueous method[J]. Chem Eng Sci, 2018, 191:500-510.
[56] WEI Z, CHEN Y, LIN P, et al. Synthesis and encapsulation of all inorganic perovskite nanocrystals by microfluidics[J]. J Mater Sci, 2019, 54(9):6841-6852.
[57] JO Y K, LEE D. Biopolymer microparticles prepared by microfluidics for biomedical applications[J]. Small, 2019:1-23.
[58] LOHCHAROENKAL W, WANG L, CHEN Y C, et al. Protein nanoparticles as drug delivery carriers for cancer therapy[J]. Biomed Res Int, 2014,2014:Article ID 180549.
[59] YEWALE C, BARADIA D, VHORA I, et al. Proteins: emerging carrier for delivery of cancer therapeutics[J]. Expert Opin Drug Del, 2013, 10(10):1429-1448.
[60] QU N, SUN Y, LI Y, et al. Docetaxel-loaded human serum albumin (HSA) nanoparticles:synthesis, characterization, and evaluation[J]. Biomed Eng Online, 2019, 18(11):1-14.
[61] SUN Y, ZHAO Y, TENG S, et al. Folic acid receptor-targeted human serum albumin nanoparticle formulation of cabazitaxel for tumor therapy[J]. Int J Nanomed, 2019, 14:135-148.
[62] ZHANG L, CHEN K, ZHANG H, et al. Microfluidic templated multicompartment microgels for 3D encapsulation and pairing of single cells[J]. Small, 2018, 14(9):1-8.
[63] CHOI C, WANG H, LEE H, et al. One-step generation of cell-laden microgels using double emulsion drops with a sacrificial ultra-thin oil shell[J]. Lab Chip, 2016, 16(9):1549-1555.
[64] LIU Q, JIANG N, LIU D, et al. Monodispersed silk fibroin microdroplets for protein stabilization[J]. Appl Phys Lett, 2018, 112(17):1-4.
[65] SAILOR M J, PARK J H. Hybrid nanoparticles for detection and treatment of cancer[J]. Adv Mater, 2012, 24(28):3779-3802.
[66] SHI J, XIAO Z, VOTRUBA A R, et al. Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery[J]. Angew Chem Int Edit, 2011, 50(31):7027-7031.
[67] BOSE R J C, RAVIKUMAR R, KARUPPAGOUNDER V, et al. Lipid-polymer hybrid nanoparticle-mediated therapeutics delivery:advances and challenges[J]. Drug Discov Today, 2017, 22(8):1258-1265.
[68] BOKARE A, TAKAMI A, KIM J H, et al. Herringbone-patterned 3D-printed devices as alternatives to microfluidics for reproducible production of lipid polymer hybrid nanoparticles[J]. ACS Omega, 2019, 4(3):4650-4657.
[69] FENG Q, ZHANG L, LIU C, et al. Microfluidic based high throughput synthesis of lipid-polymer hybrid nanoparticles with tunable diameters[J]. Biomicrofluidics, 2015, 9(5):1-10.
[70] ZHANG L, FENG Q, WANG J, et al. Microfluidic synthesis of hybrid nanoparticles with controlled lipid layers:understanding flexibility-regulated cell-nanoparticle interaction[J]. Acs Nano, 2015, 9(10):9912-9921.
[71] HAYES R, AHMED A, EDGE T, et al. Core-shell particles:preparation, fundamentals and applications in high performance liquid chromatography[J]. J Chromatogr A, 2014, 1357:36-52.
[72] CASTILLO S I R, OUHAJJI S, FOKKER S, et al. Silica cubes with tunable coating thickness and porosity:from hematite filled silica boxes to hollow silica bubbles[J]. Micropor Mesopor Mat, 2014, 195:75-86.
[73] MARTINS J P, LIU D, FONTANA F, et al. Microfluidic nanoassembly of bioengineered chitosan-modified FcRn-targeted porous silicon nanoparticles @ hypromellose acetate succinate for oral delivery of antidiabetic peptides[J]. Acs Appl Mater Inter, 2018, 10(51):44354-44367.
[74] FONTANA F, FUSCIELLO M, GROENEVELDT C, et al. Biohybrid vaccines for improved treatment of aggressive melanoma with checkpoint inhibitor[J]. Acs Nano, 2019, 13(6):6477-6490.
[75] KULKARNI J A, TAM Y Y C, CHEN S, et al. Rapid synthesis of lipid nanoparticles containing hydrophobic inorganic nanoparticles[J]. Nanoscale, 2017, 9(36):13600-13609.
[76] VALENCIA P M, BASTO P A, ZHANG L, et al. Single-step assembly of homogenous lipid polymeric and lipid quantum dot nanoparticles enabled by microfluidic rapid mixing[J]. Acs Nano, 2010, 4(3):1671-1679.
PDF(4616 KB)

Accesses

Citation

Detail

段落导航
相关文章

/